
Justinian’s GAAvernor: Robust Distributed Learning
with Gradient Aggregation Agent

Xudong Pan†, Mi Zhang†, Duocai Wu†, Qifan Xiao†, Shouling Ji*,‡, and Min Yang†

†Fudan University, ∗Zhejiang University, ‡Ant Financial
Emails: {xdpan18, mi_zhang, dcwu18, qfxiao16}@fudan.edu.cn, sji@zju.edu.cn, m_yang@fudan.edu.cn

Abstract

The hidden vulnerability of distributed learning systems
against Byzantine attacks has been investigated by recent
researches and, fortunately, some known defenses showed
the ability to mitigate Byzantine attacks when a minority of
workers are under adversarial control. Yet, our community
still has very little knowledge on how to handle the situations
when the proportion of malicious workers is 50% or more.
Based on our preliminary study of this open challenge, we
find there is more that can be done to restore Byzantine robust-
ness in these more threatening situations, if we better utilize
the auxiliary information inside the learning process.

In this paper, we propose Justinian’s GAAvernor (GAA), a
Gradient Aggregation Agent which learns to be robust against
Byzantine attacks via reinforcement learning techniques. Ba-
sically, GAA relies on utilizing the historical interactions with
the workers as experience and a quasi-validation set, a small
dataset that consists of less than 10 data samples from similar
data domains, to generate reward signals for policy learning.
As a complement to existing defenses, our proposed approach
does not bound the expected number of malicious workers
and is proved to be robust in more challenging scenarios.

Through extensive evaluations on four benchmark systems
and against various adversarial settings, our proposed defense
shows desirable robustness as if the systems were under no
attacks, even in some case when 90% Byzantine workers
are controlled by the adversary. Meanwhile, our approach
shows a similar level of time efficiency compared with the
state-of-the-art defenses. Moreover, GAA provides highly
interpretable traces of worker behavior as by-products for
further mitigation usages like Byzantine worker detection and
behavior pattern analysis.

Justinian I, an emperor of Byzantium, reorganized the imperial govern-
ment to revive the empire’s greatness in a dark time. Gradient Aggregation
Agent, a new GAAvernor (pronounced as governor) of distributed learning
system, bases its learning policy on historical and auxiliary information to
fight against Byzantine attacks.

1 Introduction

Over the past few decades, deep learning has achieved abun-
dant breakthroughs driven by big data [38, 52]. To deal
with the fast scaling-up of data volume, many efficient dis-
tributed learning algorithms have been proposed in the past
decade [3, 22, 29], yet their hidden vulnerability to Byzantine
attacks [37] have also been observed by a series of recent
works [11, 16, 31, 62].

In a typical distributed learning system [3,34,41,43,50,64],
a group of workers participate in building a global learning
model under the coordination of one parameter server. In
each round, the server first distributes current parameters of
the global learning model to each worker, requiring them to
compute the corresponding gradient based on their local data.
Once receiving all the submissions from the workers, the
server then applies certain Gradient Aggregation Rule (GAR)
to yield the next weight update. As an optimal choice in
theory [12, 47], most existing distributed learning algorithms
implemented their GAR simply by averaging over the whole
set of submitted gradients [42, 56, 63].

However, the behaviors of real-world workers are far from
ideal. As is suggested in [62], a worker may probably sub-
mit abnormal gradients due to various causes such as biased
batch sampling, computation error, network instability or even
malicious attacks. In [11], a worker with the aforementioned
abnormal behavior is usually referred to as a Byzantine worker.
As first observed by Blanchard et al., the classical GAR (i.e.,
GAR by averaging) is so fragile that even a single Byzantine
worker can have a catastrophic effect on the whole learning
process, from degraded prediction accuracy [31] to total stag-
nation [11]. These facts highly emphasize the urgency and
significance of effective defense against this type of adversar-
ial behavior, namely Byzantine attack.

To fight against Byzantine attacks, most previous studies
implement alternative GARs to the classical one [4, 11, 16,
31, 62]. These methods view gradients abstractly as high-
dimensional vectors to apply robust statistical methods such
as clustering [11], median [31] or geometric median [4,16,62].

1

Although it allows previous methods to be highly decoupled
with the underlying learning systems, the simplicity is ac-
companied with several weaknesses: First, as previous GARs
computes the weight update direction as the only product,
they are unable to provide interpretable information of the
workers’ behaviors for further mitigation; Second, due to the
theoretical bottleneck of robust statistics [48], most known
defenses expect that only a minority of workers are compro-
mised. As a result, they are inadequate and cannot be directly
extended to cover more challenging scenarios where the ad-
versary has gained control over a majority of workers and
iteratively manipulates an uncertain ratio of workers to play
the Byzantine roles.
Our Work. In this paper, we propose the design of Justinian’s
GAAvernor (GAA), a Gradient Aggregation Agent which
serves as a novel server-side defense that leverages Rein-
forcement Learning (RL) techniques to learn to be Byzantine-
robust from interactions with the workers and from the auxil-
iary information on the server. Our defense aims at restoring
the robustness of distributed learning in more challenging
scenarios characterized by the existence of the malicious ma-
jority.

By viewing the historical interactions with the workers as
its experience and the relative decrease of loss on a quasi-
validation set as its reward, GAA searches over a simplex as
its policy space for the optimal policy. Intuitively, each coor-
dinate of a policy of GAA can be interpreted as its current
credit on the corresponding worker. By proposing the weight
update at each iteration as a linear combination of the received
gradients weighted with its credits, GAA receives the reward
signal after the global learning model is updated with the cur-
rent weight update and it then optimizes its current policy by
RL techniques [54]. It is worth to notice, we introduce the
notion of a quasi-validation set to denote a collection of data
samples that follows a similar but not necessarily identical
distribution as the true sample distribution. In practice, when
a golden-labeled validation set (i.e., a set of samples from
the true sample distribution) is available during the learning
process, GAA can utilize it as its quasi-validation set. Other-
wise, GAA randomly collects a small number of data samples
(empirically, less than 10 samples) from similar data domains
to form its quasi-validation set.

With extensive experiments, we evaluate GAA’s robustness
on four diverse case studies (i.e., MNIST [39], CIFAR-10 [35],
Yelp reviews [1] and CMS public healthcare records [2]),
against various attacking settings. We find our proposed ap-
proach shows near-optimal Byzantine robustness in most
cases, whenever the ratio of Byzantine workers (i.e., Byzan-
tine ratio) is below or over 50% or fluctuates unboundedly.
Meanwhile, GAA shows comparable time efficiency to known
defenses. We also evaluate GAA’s robustness against several
adaptive attacks on this novel defense mechanism. Moreover,
we present the application of GAA to Byzantine worker de-
tection, which shows high accuracy, and to behavior pattern

analysis of Byzantine attacks, which demonstrates high inter-
pretability of its traces.
Contributions. In summary, we mainly make the following
contributions.
• We propose the design of GAA, a novel RL-based defense

against Byzantine attacks which requires no upper bound
on the Byzantine ratio (§4).

• We implement and evaluate our proposed defense on four
diverse case studies, against various adversarial settings.
Empirical results suggest in most cases, GAA with an easily
accessible quasi-validation set helps the distributed learning
systems achieve almost indistinguishable performance as if
the systems were under no attacks (§5 & §6).

• We also provide a number of analytic results on GAA’s ro-
bustness in different settings as theoretical evidences (§4.4).

• Additionally, we demonstrate the interpretability of GAA’s
traces with visualizations and with applications to Byzan-
tine worker detection and behavior analysis (§4.5), which
we hope will facilitate future mitigation studies.

2 Background and Preliminaries

Gradient-based Distributed Learning and GAR. In this
paper, we focus on the data-parallel distributed learning sys-
tem with one parameter server (abbrev. the server) and n
workers. This system model is widely used as one of the
commonest implementations of distributed learning algo-
rithms [3, 34, 41, 43, 50, 64]. We denote the loss function
to be minimized as f (θ,D), where θ∈Rd collects all the free
parameters of the underlying model (e.g., a deep neural net-
work) and D denotes the sample distribution. Usually, the true
loss function f (θ,D) is the expectation over the sample distri-
bution, i.e. f (θ,D) := Ez∼D [f (θ,z)] where D is unknown to
the server. In practice, the optimization happens on the empir-
ical version of the loss f (θ,D) := 1

|D| ∑z∈D f (θ,z), where D
is a collection of training samples. For simplicity, we denote
the true loss function as f and the empirical loss function
calcuated on dataset D as f̂D.

The distributed learning process starts with an initial guess
θ0 on parameters. At iteration t, the server first sends the
current parameter θt to each worker. Ideally, a worker i then
computes the estimated gradient V t

i of loss f at parameter
θt based on its local data and submits V t

i back to the server.
Once the server receives the candidate set of gradients Qt :=
{V t

1 , . . . ,V
t
n}, it executes certain GAR F : (Rd)n → Rd to

aggregate the received gradients into a single weight update
direction. Such a procedure is executed in iterations until
a provided termination condition is reached. Formally, the
update rule at iteration t follows θt+1 = θt −λF (V t

1 , . . . ,V
t
n),

where λ is the learning rate.
In the literature of distributed learning, the following GARs

are the common choices for implementation of F [3, 22, 29,
34, 61], while their vulnerability to Byzantine attacks have

2

been studied in a series of recent works [11, 16, 31, 62].

Definition 1 (Classical GAR). F (V1, . . . ,Vn) =
1
n ∑

n
i=1 Vi

Definition 2 (Linear GAR). As a generalization of classi-
cal GAR, a linear GAR F with parameter α ∈ Sn is defined
as F (V1, . . . ,Vn) = ∑

n
i=1 αiVi, where Sn := {α ∈ Rn : αi ≥

0,∑n
i=1 αi = 1} is called an n-dimension simplex.

Benign Workers vs. Byzantine Workers. In order to have a
precise understanding of what a Byzantine worker is, we start
from a formal definition of benign worker.

As is discussed, at iteration t, each worker is expected to es-
timate the true gradient gt = Ez[∇θ f (θt ,z)] based on its local
data set D. Optimally, it computes V t := 1

|D| ∑z∈D ∇θ f (θt ,z)
as its submission, due to the well-known fact that V t is an
unbiased estimator of gt if D is i.i.d. sampled from D [12].
Generally, it inspires us to make the following definition.

Definition 3 (Benign Worker). A worker which submits a
gradient V t at iteration t is said to be benign if V t is an
unbiased estimator of the true gradient gt , i.e., EV t = gt .

With such a definition of benign worker, it is rather simple
to define a Byzantine worker as its opposition.

Definition 4 (Byzantine Worker). Otherwise, a worker is said
to be Byzantine at iteration t if V t is biased, i.e., EV t−gt 6= 0.

A well-established theorem from statistics states that clas-
sical SGD is guaranteed to converge if the gradient estimation
at each descent step is unbiased [12, 14]. If the system is
ideally correct, classical GAR is almost the optimal choice.
However, it is usually not the case in real-world settings [62].
In fact, as first noticed by [11], classical GAR and its variants
are so fragile that even a single Byzantine worker can totally
break the whole learning process, as is stated by the following
lemma.

Proposition 1. [11, Lemma 1] For any linear GAR F with
fixed parameter α, the adversary with only one single Byzan-
tine worker can fool F into yielding any arbitrary weight
update continually regardless of other submissions.

3 Security Settings

3.1 Threat Model
Throughout this paper, we consider the same threat model
as in previous studies [4, 11, 16, 31, 62]. Generally speaking,
this threat model assumes that, the adversary compromises a
proportion β (s.t. β ∈ (0,1)) of all workers throughout the
learning process and he/she commands the compromised
workers to present arbitrary behaviors at each iteration. In
other words, the adversary is able to choose the submitted
gradients of each manipulated worker. Noteworthily, at itera-
tion t, the Byzantine ratio can be also smaller than β if some

Table 1: Comparisons among different defenses against
Byzantine attacks.

Constraint Time Complexity Space Complexity

Brute-Force [31, 48] n≥ 2m+1 O(
(n

m

)
(n−m)d) O(

(n
m

)
+nd)

GeoMed [16, 62] n≥ 2m+1 O(n2d) O(n2d)

Krum [11] n≥ 2m+3 O(n2d +n2 logn) O(n2d)

Bulyan [31] n≥ 4m+3 O(n2d) O(n2 +nd)

GAA (ours) n≥ m+1 O(n3d) O(n2 +nd)

Byzantine workers pretend benign. To provide a finer-grained
description on the threat model, we introduce the following
notions.
Role Function. As is discussed, each worker behaves either
benignly or maliciously at iteration t. Therefore, we introduce
the notion of the role function of worker i to characterize its
temporal behaviors. Formally, the role function is defined as
a binary-valued function on Z+, i.e., the timeline. Intuitively,
ri(t) = 1 means worker i behaves normally at iteration t and
otherwise, worker i is a Byzantine worker.
Tampering Algorithm. Byzantine workers can choose differ-
ent tampering algorithms to produce malicious gradients. In
previous studies, several realizations of tampering algorithms
have been used for evaluation of defenses, such as random
fault [11] (More details can be found in Section 5.1). In gen-
eral, we denote the tampering algorithm as T , which, with the
estimated gradient as the input, outputs the tampered gradient
for submission. As in previous studies, we assume the identity
of the tampering algorithm for each malicious worker.

With the notions above, the behavior of the manipulated
worker i at iteration t can be described as
1. First, the adversary selects the current role of the worker i

as ri(t).
2. If the role is benign, i.e., ri(t) = 1, then the worker honestly

computes the gradient on its local data, that is, V t
i .

3. Otherwise, i.e., ri(t) = 0, it tampers the gradient V t
i with

certain tampering algorithm T (e.g., random fault) and
produces T (V t

i).
4. Finally, the produced gradient is sent back to the server.

3.2 Previous Defenses

In order to fight against the aforementioned threat model,
previous works proposed several alternative GARs to classical
GAR and its linear variants. We briefly review the state-of-
the-art defenses as follows, where m out of n workers are
assumed to be Byzantine at certain iteration, s.t. m/n≤ β. For
an overview, please refer to Table 1.
Brute-Force [31, 48] is based on a brute-force search for
an optimal subset C ∗ in Q of size n−m with the minimal
maximum pairwise distance. Formally, the optimal set can be
written as C ∗ = argminC∈R max(Vi,V j)∈C×C ‖Vi−Vj‖, where
R := {C ⊂ Q : |C |= n−m}. Then the proposed weight up-

3

date direction is calculated as F (V1, . . . ,Vn) =
1

n−m ∑V∈C ∗V .
It was proved to be perfectly robust when n ≥ 2m+ 1 [48],
while it is almost intractable in highly distributed learning
systems.

GeoMed [16, 62] computes the geometric median of Q as
the proposed estimator, which assumes the Byzantine ra-
tio satisfies n ≥ 2m + 1 [16, 62]. In consideration of the
computational complexity of geometric median when n is
large [18], recent works on Byzantine robustness proposed to
approximate it with the vector in Q which has the smallest
sum of distance with other gradients, i.e., F (V1, . . . ,Vn) :=
argminVi ∑ j 6=i ‖Vi−Vj‖.
Krum [11] was recently proposed in [11] as an approximate
algorithm to Brute GAR, which assumes the Byzantine ra-
tio satisfies n ≥ 2m+ 3. It first finds the n−m− 2 closest
vectors in Q for each Vi, which is denoted as i→ j in their
original work. Next, it computes a score for each vector Vi
with the formula s(Vi) = ∑i→ j ‖Vi−Vj‖2. Finally, it proposes
the vector Vi with the smallest score as the next update step,
i.e., F (V1, . . . ,Vn) = argminVi∈Q s(Vi).

Bulyan [31] was originally designed for Byzantine attacks
that concentrate on a single coordinate. First, it runs Krum
over Q without replacement for n−2m time and collect the
n− 2m gradients to form a selection set. It then computes
F coordinate-wise: the i-th coordinate of F is equal to the
average of the n−4m closest i-th coordinates to the median
i-th coordinate of the selection set. Bulyan has the strictest
assumption as n≥ 4m+3 (and otherwise it is not executable),
which significantly limits its practical usage.

As we can see, the aforementioned approaches only con-
sidered the limited situation when β is expected to be smaller
than 1/2. In more general cases, e.g., when there is no explicit
upper bound on the Byzantine ratio in the system, merely no
defenses above could remain robust any longer. The following
proposition provides a typical failure case.

Proposition 2. Consider the submitted gradients at iteration
t as (V1, . . . ,Vn−m,B1, . . . ,Bm) where {Bi}m

i=1 are Byzantine
gradients. For the slightest violations in each case, i.e., n= 2m
for Brute GAR, GeoMed and n = 2m+2 for Krum, the adver-
sary can simply take B1 = B2 = . . .= Bm = E to tempt these
GARs to always yield E, any arbitrary direction specified by
the adversary.

In practice, this more challenging situation could happen
for distributed learning systems in open network environments
[61]. When the adversary has already compromised a majority
of workers at the beginning or continuously gains malicious
control over each worker during the learning process, the
Byzantine ratio in system could go over 1/2 or even fluctuate
with uncertainty. In either cases, the system robustness is no
longer under guard with the above defenses.

4 Defense with Gradient Aggregation Agent

4.1 Overview

In order to restore robustness in a more general scenario, we
suggest the defender to be combined more tightly with the
underlying learning process, by utilizing some auxiliary infor-
mation inside the distributed learning system for mitigation
purposes. Before providing an overview of our methodology,
we first clarify our security assumptions and present our goals
of defense.
4.1.1 Security Assumptions. We make the following assump-
tions on the distributed learning system where GAA is to be
deployed.
Assumption 1. The server is secure.
Assumption 2. There is one worker that is never controlled
by the adversary.
Assumption 3. The local datasets on workers are i.i.d. sam-
pled from the unknown distribution D .
Assumption 4. GAA has access to a quasi-validation set
B of size S, which consists of i.i.d. samples from a sample
distribution Pm s.t. KL(Pm||D)< ∞, i.e., the KL-divergence
between Pm and D is upper bounded by a constant.

Here, Assumptions 1 & 3 are commonly adopted in pre-
vious studies [4, 11, 16, 31, 62]. As GAA is deployed on the
server, Assumption 1 guarantees its correct execution. Notice-
ably, Assumption 2 relaxes the known slightest requirements
on the tolerable Byzantine ratio to 1−1/n. As a trade-off, we
require Assumption 4 to introduce an additional condition on
the availability of a quasi-validation set that follows a similar
but not necessarily identical distribution as the true sample
distribution. In theory we prove the lower the divergence, the
better the model performance will be (Thm. 1 & 2). Through
empirical evidences, we show this assumption can be easily
satisfied with the quasi-validation set that consists of few sam-
ples from similar data domains, if there is no provided golden
validation set [34, 61].
4.1.2 Defender’s Goals. Towards Byzantine robustness, the
defender’s primary goal is to guarantee the distributed learn-
ing process can minimize the loss function f to an acceptable
threshold, usually compared to the global minimum of the
loss function [31]. In practice, it is also reasonable to mea-
sure the robustness of certain defense by the gaps among the
model’s utility (e.g., the accuracy of an image classifier) when
the defense is equipped, unequipped with or without attacks.
We will provide more details in Section 5.
4.1.3 Methodology Overview. Before detailing the imple-
mentations, we provide an overview of our proposed approach
(Fig. 1). Robust distributed learning with GAA follows the
following procedures: First, on receiving the submitted gradi-
ents from each worker, GAA, an additional module deployed
on the server, executes certain policy to pose credit on each
worker. Intuitively, GAA has limited credit in total and it will
pose higher credit on the worker it trusts more (Step 1). Next,

4

GAA aggregates the gradients based on the credit and then
proposes the weight update decision to the underlying learn-
ing process (Step 2). Finally, the learning process produces a
reward signal based on the quasi-validation set, which is used
to indicate the quality of the update direction (Step 3) and can
further help GAA adjust its policy dynamically (Step 4).

Figure 1: Overview of our proposed defense.

4.2 Distributed Learning as a Markov Deci-
sion Process

Following the conventions of Reinforcement Learning
(RL) [53], we first define the notion of environment, with
which an agent interacts. Standardly, the environment of
a Markov Decision Process (MDP) is represented as a tu-
ple (S ,A ,R, p0, p,γ), where S ,A are respectively the set
of states and of actions, R : S → R is the reward function,
p0 : S → R+ is the initial probability density over states and
p : S×A×S →R+ is the transition probability density, with
γ ∈ (0,1] the discount factor. In the context of distributed
learning, our specifications for these components are stated
as follows. Fig. 2 shows an overview of our MDP settings.
Set of States S . In the terminology of MDP, a state usually has
the intuitive meaning as a context, based on which the agent
makes a decision. Naturally, our GAA at iteration t refers to
the tuple st := (Qt ,θt , f̂B(θt)) as the current state to decide
the next weight update direction. Recall θt ,Qt are respectively
the parameter and the received gradients at iteration t, while
f̂B(θt) is defined as the loss at θt estimated by the server on
the quasi-validation set B.
Set of Actions A . Taking advantage of the simplicity of linear
GAR, we propose to define the action space as an n-dimension
simplex, where n is the number of workers. Generally speak-
ing, our motivation here is to regularize the action space with
prior knowledge and therefore the cost on searching the op-
timal policy can be largely scaled down. By restricting the
feasible action to the space of linear GARs, GAA at each
iteration chooses a candidate internal action αt ∈ Sn based on
the current state st and the previous action αt−1. Intuitively,
this process can be considered as GAA’s posing credit on each
worker. Based on αt , GAA then proposes the current update
step as θt+1 = θt −λ(∑n

i=1 α
(i)
t V t

n).
It is worth to notice, although the aggregation rule of GAA

is linear in its form, it largely differs from linear GARs in that
the coefficient αt is chosen by a sophisticated agent adaptively
at each iteration rather than predefined, which therefore makes

Figure 2: Distributed learning as an MDP.

our model immune to the vulnerability innate to linear GARs
[11].
Reward Function R. Reward function is usually defined as
a function from each state s to a scalar value, which pro-
vides heuristics for policy learning. In our context, we set the
reward at iteration t as Rt := f̂B(θt)− f̂B(θt+1), namely the
relative loss decrease on the quasi-validation set B. Intuitively,
if KL(Pm||D) is 0, the reward Rt highly reflects the changes
in the true loss f [47] and thus provides a good guidance
for GAA’s policy learning. For other situations when Pm is
similar but not necessarily identical with the true distribution,
empirical studies show the reinforcement learning techniques
still work well, probably due to its innate tolerance of noises
in rewards [53].
Initial and Transition Probability Density p0, p. Usually,
these terms are partially unknown to an agent, which could
only be estimated implicitly from observed trajectories [57].
Similarly, our GAA only has the partial knowledge regarding
θ and f̂B(θ) of p0, with random initialization of parameters,
and of p, with the updating rule above, but totally ignorant
of the initial distribution of Q0 and its transition. In fact, the
learning of GAA is exactly paralleled with an incrementally
accurate estimation of p0 and p, which equivalently means a
better knowledge of the undertaking Byzantine attacks.
Discount Factor γ. Discount factor as a constant in (0,1]
describes how the rewards in history influence the current
decision, the value of which is determined by different ap-
plication scenarios. Our configurations can be found in the
evaluation parts.

4.3 Learning Optimal Policy for GAA
In the MDP setting above, our GAA is required to search
for certain optimal policy π(α|s) to maximize the expec-
tation of accumulated reward [54], where π(α|s) denotes
a parametrized distribution over the action space A , con-
ditioned on the currently observed state s. Formally, the
optimization objective for training GAA is defined as
maxπEs0,a0,...,sT ,aT [∑

T
t=0 γtR(st)], where (s0,a0, . . . ,sT ,aT) is

called a trajectory (or, experience) of length T + 1, which
has the joint probability density p(s0,α0, . . . ,sT ,αT) =

5

Figure 3: Implementation of GAA’s policy as a general recur-
rent neural network.

p0(s0)∏
T
t=1 p(st |st−1,αt−1)π(αt−1|st−1).

In the context of RL, the objective above has been in-
tensively studied and various mature algorithms such as
policy gradient descent [54] or Q-learning [57] have been
proposed to solve it. We expect our GAA can be seam-
lessly fused into the learning process of the underlying
model with a similar behavior as statistical GARs. There-
fore, we propose to approximately model the chained term
∏

T
t=1 p(st |st−1,αt−1)π(αt−1|st−1) in the joint probability den-

sity with a general Recurrent Neural Network (RNN [27,59]).
The full computational graph of our proposed implementation
is illustrated in Fig. 3. Starting from the initial state s0 ∼ p0
and initial action α0 := (1

n , . . . ,
1
n), we formulate the auxil-

iary RNN as follows ∀t ∈ {0, . . . ,T −1},αt+1 = hψ(st+1,αt),
where hψ denotes certain recurrent unit with parameter ψ,
with its range as a subset of Sn. Practically, such a condition
can be easily realized with a softmax layer [10]. For details,
please see Section 5.1.

Therefore, the optimization objective of GAA is refor-
mulated as minψEs0∼p0 [∑

T−1
t=0 γt(f̂B(θt+1)− f̂B(θt))], where

θt is uniquely determined with the update rule conditioned
on αt−1 and θt−1. By expansion of f̂B, we can formulate
the final optimization objective of GAA in episode i as
minψ

1
S ∑

T−1
t=0 γt

∑z∈B f (θt+1,z)− f (θt ,z), where θ0 is initial-
ized randomly while α0 in episode i always inherits value
from αT in episode i−1. Our learning algorithm is listed in
Algorithm 1.

4.4 Analytical Results

In this part, we present theoretical evidence on Byzantine
robustness of distributed learning with GAA when the Byzan-
tine ratio is fixed or fluctuates with uncertainty. Please note
in the following analysis we focus on the empirical version
of f on the training set, as the omitted leap from our proved
results to f is guaranteed by standard results in generalization
theory [58]. For the same reason, we maintain the notation
f for its empirical version. We assume the loss function f
is convex and η-smooth with pointwise bounded gradient
‖∇ f‖2 ≤M. For non-convex objective, our results can be ex-

Algorithm 1: Robust Distributed Learning against
Byzantine attacks with GAA

1 Initialize parameters of recurrent unit hψ randomly ;
2 Initialize αold = α0 = (1

n , . . . ,
1
n) ∈ Sn;

3 for i ∈ {1, . . . ,N} do
4 Initialize parameters of f as θ0 randomly ;
5 for k ∈ {1, . . . ,K} do
6 α0← αold, `GAA← 0;
7 for t ∈ {0, . . . ,T −1} do
8 Send the current parameters θt to each worker ;
9 Receive submitted gradients Qt := (V t

1 , . . . ,V
t
n) ;

10 θt+1← θt −λ(∑n
i=1 αi

tV
t
i) ;

11 `GAA← `GAA + 1
S γt

∑z∈B f (θt+1,z)− f (θt ,z) ;
12 αt+1← hψ(st+1,αt)

13 end
14 Update ψ with a step of gradient descent on `GAA ;
15 αold← αT ;
16 end
17 end

tended with quadratic approximations [13]. Due to the page
limit, we provide the detailed proofs for the results in this part
at the website pertaining to this paper 1.
4.4.1 Provable Robustness with a Fixed Byzantine Ratio.

Theorem 1. After t steps of gradient descent with GAA when
the Byzantine ratio is fixed as β, Algorithm 1 yields a param-
eter θt s.t.

f (θt)− f (θ∗)<

2RM√
(1−β)nt

+
SηR2

t
+
√

2‖ f‖∞

√
KL(Pm||D)+O(e−t)

(1)

where R is the diameter of parameter space.

Corollary 1. As long as β is smaller than 1 and Pm = D a.e.,
Algorithm 1 in the above setting will asymptotically converge
to the global optimum with rate O(1/

√
t).

Intuitively, Theorem 1 suggests, when the Byzantine ra-
tio is fixed over time, GAA is proved to help the underly-
ing system attain a sub-optimal parameter with error ε +
O(
√

KL(Pm||D)) in O(1
(1−β)ε2) steps. It suggests a lower KL-

divergence bound (at the scale of 10−2 in our case studies with
a quasi-validation set constructed from similar data domains)
and a smaller Byzantine ratio will lead to a more accurate
sub-optimum. When the quasi-validation set is from the true
distribution, Corollary 1 further guarantees the convergence
of the learning process with rate O(1/

√
t), which is relatively

larger than the optimal rate O(1/t) in Byzantium-free learn-
ing case [14]. We provide a more detailed explanation on the
meaning of each term and an empirical validation of Theorem
1 in Appendix A.4.

1https://bit.ly/2wjR2bb

6

https://bit.ly/2wjR2bb

4.4.2 Provable Robustness with a Fluctuated Byzantine
Ratio.

Theorem 2. After t steps of gradient descent with GAA when
the Byzantine ratio fluctuates randomly other than 1, Algo-
rithm 1 yields a parameter θt s.t.

f (θt)− f (θ∗)<
2RM+M√

t
+

SηR2

t
+
√

2‖ f‖∞

√
KL(Pm||D)

(2)
where R is the diameter of parameter space.

Corollary 2. Specifically, if Pm = D a.e., the learning pro-
cess will asymptotically converge to the global optimum with
convergence rate O(1/

√
t).

Intuitively, Theorem 2 suggests, although there is still a
guarantee for GAA to attain the sub-optimum in this case, the
error term on the right of (2) is independent from β and is
slightly larger than the one in (1). It is mainly because GAA
in this case would pose all its credit on one single worker that
is never compromised and therefore the distributed learning
system degrades to a single-noded version when Byzantine
ratio fluctuates. Similarly, Corollary 2 proves the convergence
of GAA in this more challenging case when a golden-labeled
validation set is available.

4.5 Byzantine Worker Detection & Behavior
Analysis

In principle, when a policy is learned on how to determine
an optimal action αt according to the current state st and
the historical information, our GAA is expected to master a
good knowledge of the undertaking Byzantine attacks. Gen-
erally speaking, since the action proposed by our GAA is
always constrained in Sn, it is therefore reasonable to view
each component of αt as the credit on the corresponding
worker. Specifically, we present its application in detection
and behavioral pattern analysis of Byzantine workers below.
4.5.1 Byzantine Worker Detection. When the Byzantine
ratio is fixed, accurate detection of Byzantine workers can
help accelerate the learning process by eliminating potential
Byzantine workers at an early stage. Therefore, we suggest
detection algorithms should aim at selecting K most suspi-
cious workers at iteration t. Although most statistical GARs
are not directly applicable for detection tasks, we find one
exception is GeoMed, for which we provide a straightforward
extension as follows.

Procedure 1 (GeoMed+). Given Qt = {V t
1 , . . . ,V

t
n},

Step 1. Initialize Ot = {}
Step 2. Ot ← i∗ := argmaxi∈{1,...,n}∑V t

j∈Qt ‖V
t
i −V t

j‖
Step 3. Qt ← Qt\{V t

i∗}
Step 4. If |Ot |= K, output Ot . Otherwise, go to Step 2.

As a comparison, Byzantine worker detection with GAA
can be conducted in a more natural way.

Procedure 2 (GAA+).
Step 1. Find K smallest coordinate of αt .
Step 2. Output the corresponding index set as Ot

4.5.2 Byzantine Behavior Analysis. When the Byzantine
ratio fluctuates with unknown patterns, detecting temporal
characteristics is a much more challenging task compared
with the aforementioned case. Barely any previous statistical
GARs can be adapted for addressing this task due to their lack
of interpretability, while our proposed GAA can be applied
directly for Byzantine behavior analysis with visualizations.
In this case, we can visualize the policy sequence {αt} to
understand the temporal patterns of Byzantine attacks. A con-
crete demonstration on a situation when the Byzantine ratio
fluctuates periodically is presented in Section 6.5.

5 Overview of Evaluations

5.1 Overall Settings
5.1.1 Benchmark Systems. We build GAA into the dis-
tributed learning process of four benchmark systems for text
and image classification listed in Table 2. On MNIST and
CIFAR-10, each worker shares a copy of the training set, while
on Yelp and Healthcare, each worker has its local dataset. In
all the cases, the loss function f is set as the cross entropy loss
between the prediction of classifier g and the ground-truth.
More details are provided in Appendix A.3.

Table 2: Summary of the benchmark systems.

MNIST CIFAR-10 Yelp [1] Healthcare [2]

Model MLP ResNet-18 MLP MLP

Task Hand-Written Digits
(10-class)

Objects
(10-class)

Sentiment
(2-class)

Disease
(10-class)

Samples 60k
(Shared)

60k
(Shared)

20k per worker
(Local)

20k per worker
(Local)

Parameters 25,450 11,173,962 10,272 33,130

Workers 50 50 10 50

5.1.2 Attacking Patterns. We consider the following three
attack patterns of the adversary.
• Static Attack: All the βn compromised workers play the

role of Byzantine workers during the whole learning pro-
cess.

• Pretense Attack: In this case, the βn manipulated workers
pretend to be benign in the first L rounds and start the attack
from the (L+1)-th round.

• Randomized Attack: At beginning, each compromised
worker (βn in total) is assigned with its role ri(0) by the
adversary. During the learning process, it changes its role
with a probability q at a period of p rounds.

7

It is worth to notice, the first pattern is a realization for the
case in Section 4.4.1, when the Byzantine ratio is fixed over
time, while the pretense and randomized attacks correspond
to the setting in Section 4.4.2 when the Byzantine ratio fluc-
tuates with or without uncertainty. Moreover, the latter two
patterns are designed as adaptive attacks on the RL mecha-
nism adopted by GAA. Both randomized attack and pretense
attack attempt to mislead GAA into making wrong credit as-
signments, by letting the manipulated workers pretend to be
benign and submit normal gradients in a certain time span of
the learning process.

5.1.3 Tampering Algorithms. In experiments, we evaluate
the impact of two realizations of the tampering algorithm T .

• Random Fault (RF) [11]. For RF, Byzantine workers sub-
mit noisy gradients sampled from a multi-dimensional
Gaussian N (µ,σ2I). In our experiments, we take µ =
(0.5, . . . ,0.5) ∈ Rd and σ = 2×10−6.

• Adaptive Fault (AF). For AF, we consider an adversary
has some knowledge of the quasi-validation set, which al-
lows the manipulated workers to submit well-crafted gra-
dients that can tempt GAA to assign them with high cred-
its and meanwhile maximize the overall training loss. We
provide the details on the implementation of this fault in
Section 6.3.

5.1.4 Implementation Details of GAA. We implement the
recurrent unit hψ of GAA in the following experiments as
a fully connected, feed-forward neural network with no hid-
den layer, with an input layer of size (3n+ 2)× d (i.e., the
dimension of concatenation of st and αt) and an output layer
of size d with softmax activation. For other common hyper-
parameter settings in Algorithm 1, we set the learning rate λ

as 0.05, discount factor γ as 0.9, the episode length T as 5,
the number of episode N as 5. Each benign worker computes
the gradient on randomly sampled mini-batch of size 64 for
MNIST & CIFAR-10 and 256 for Yelp & Healthcare.

5.1.5 Choice of the Quasi-Validation Set B. For MNIST
and CIFAR-10, we set the quasi-validation set as a random
mini-batch of training samples. For Yelp and Healthcare, we
implement the quasi-validation set as a small subset of sam-
ples from similar data domains. On Yelp, each worker holds
20k restaurants’ reviews (randomly selected from the raw
restaurant reviews) from one of the 10 US states with the
most recorded Yelp reviews (including Arizona, Illinois and so
on). We randomly sampled 1k reviews from South California,
which is not in the top-10 states, as the full quasi-validation
set. On Healthcare, each worker holds 20k treatment descrip-
tions from local hospitals in one of the 50 different states,
while we use a subset of descriptions from Alaska as the full
quasi-validation set, which contains 1k records in total. For
all our experiments on Yelp and Healthcare, we use less than
10 random samples from the full quasi-validation set as the
working quasi-validation set.

5.2 Summary of Results
We highlight some experimental findings below.
• Robustness - GAA effectively defends the 4 benchmark

systems against 3 attacking patterns and 2 tampering algo-
rithms, with a wide range of configurations. It helps the
underlying systems achieve comparable performance in
limited rounds as if the systems were not under attacks.

• Efficiency - The time efficiency of GAA is on a similar scale
with previous statistical defenses.

• Interpretablity - A well-trained GAA provides informa-
tive and interpretable traces that can be used for Byzantine
worker detection and behavior pattern visualization.

6 Results & Analysis

6.1 Robustness against Static Attacks

Figure 4: Test accuracy of the benchmark systems under static
attacks when different defenses are applied up to a fixed
round.

6.1.1 Comparison with Baselines. We compare the Byzan-
tine robustness of our proposed GAA with 6 baselines under
static attacks with RF: (A) Classical GAR (B) Brute-Force
(C) GeoMed (D) Krum (E) Bulyan and (F) Classical GAR
without attack. We include the last baseline for measuring the
degradation of each method under attacks. We set the Byzan-
tine ratio β in the static attack as 0.2, 0.5, 0.7, where 0.2 is a
tolerable Byzantine ratio for all the baselines and 0.5 corre-
sponds to the breaking point of the baselines. Fig. 4 shows
the final test accuracy of the four benchmark systems with
different defenses equipped, up to 5k,10k,20k,40k rounds re-
spectively. As Bulyan is not executable when n≥ 4m+3, the
corresponding result is not collected when β≥ 0.5. Moreover,
Brute-Force on MNIST, CIFAR-10 & Healthcare and Bulyan
on CIFAR-10 fail to finish the learning in 10 days due to the
high time complexity (we provide evaluations in Section 6.1.2
and Table 1), the corresponding results are not reported.
Results & Analysis. As we can see from Fig. 4, when the
Byzantine ratio is as small as 0.2, each baseline method is ob-
served to be Byzantine robust, which conforms to the reported
results in previous works [31]. In this case, our GAA also

8

Figure 5: Learning curves of GAA against randomized attacks and pretense attacks.

helps the underlying model achieve a similar test accuracy.
Noticeably, the robustness of our GAA is strongly demon-
strated by its comparable performance to classical GAR with-
out attack, when the Byzantine workers are in majority. For
example, as the β = 0.5 cases represent the breaking point
of Brute-Force, Krum and GeoMed, on Yelp the benchmark
systems with the baseline defenses perform no better than a
random guesser, while GAA helps the system achieve over
80% accuracy, which is very close to the 84.5% accuracy
when the system is under no attack. A similar phenomenon
was observed even when we further enlarge the Byzantine
ratio to 0.7. These results imply GAA does complement the
existing defenses when the Byzantine ratio is larger than 0.5.
6.1.2 Time Efficiency. We measure the time cost of our de-
fense and provide a tentative comparison with previous de-
fenses. We run the four benchmark systems with different
defenses under the same static attack in the previous part and
record the time cost of 100 iterations with 10 repetitions in
the same environment described in Appendix A.1. Table 3
lists the running time of different defenses in each case. As
the results imply, GAA brings computation overheads on a
similar scale compared with previous defenses, which roughly
corresponds to the theoretical complexity listed in Table 1.

Table 3: Time cost of distributed learning with each defense
(sec. / 100 iterations), where - means the 100 iterations have
not finished in one hour.

Classical GAA GeoMed Krum Bulyan Brute-Force

MNIST 6.32 8.14 15.85 15.79 698 -

CIFAR-10 116.85 129.50 118.73 118.69 - -

Yelp 1.45 2.40 1.76 1.85 13.16 4.76

Healthcare 8.77 11.15 17.70 18.57 1877 -

6.2 Robustness against Adaptive Attacks on
the RL mechanism

In this part, we evaluate the robustness of GAA when the
adversary attempts to mislead the credit assignment by letting
the manipulated workers pretend to be benign.
6.2.1 Comparison with Baselines. First, we evaluate the four
benchmark systems under the randomized attack of q = 0.5,

p = 5 and the pretense attack of β = 0.7,L = 1000, when
GAA and other baseline defenses are equipped. Each worker
is assumed to play the Byzantine role with RF. For random-
ized attacks, 24 out of 49 compromised workers are initially
malicious on MNIST, CIFAR-10 & Healthcare and 4 out of 9
on Yelp. Fig. 5 plots learning curves of the benchmark sys-
tems when different defenses are equipped, where the shaded
part of the curves denotes the variance of the accuracy within
10 repetitions.
Results & Analysis. As we can see from Fig. 5, , GAA is
the only defense that is robust against both randomized and
pretense attacks. For example, Fig. 5(a)&(e) shows GAA
helps the benchmark system on MNIST achieve about 90%
accuracy on average, which is close to the 96.4% accuracy
of the system under no attack. As a comparison, the sys-
tems equipped with the baseline defenses either has final
performance much lower than the expected or totally stagnate.
Moreover, from Fig. 5(e)-(h), we find no fluctuation happens
when the manipulated workers begin to attack after 1K rounds,
which implies the RL mechanism of GAA is robust against
pretense. Below, we present a more careful evaluation of GAA
under a wide range of attack configurations.
6.2.2 GAA under Adaptive Attacks with Varied Config-
urations. Besides, we further evaluate GAA’s robustness
against the randomized attacks and the pretense attacks with
diverse configurations on Yelp and Healthcare. Fig. 6 presents
the learning curves of the underlying benchmark systems
under attacks of varied configurations listed in the legends,
where the shaded part of the curves denotes the variance of
the accuracy within 10 repetitions.
Results & Analysis. As we can see from Fig. 6, under ran-
domized Byzantine attacks of most configurations, GAA helps
the benchmark systems on Yelp and Healthcare achieve de-
sirable performance, compared with the accuracy of systems
without Byzantine attacks. For example, in most configura-
tions for Yelp, the final accuracy is around 83%, which is
close to the optimal accuracy 84.5%. Although from Fig. 6(b)
we notice the q = 0.0 case on Yelp has a larger variance, the
average final accuracy is only about 10% lower compared
with the optimal accuracy, which is still acceptable consid-
ering the high Byzantine ratio up to 0.7. Similarly, from Fig.

9

Figure 6: Learning curves of the benchmark systems on Yelp and Healthcare when GAA is applied for defending against
randomized attacks with varied role-change period (the first column), role-change probability (the second column), initial
Byzantine ratio (the third column) and against pretense attacks with varied pretense rounds (the last column). The legend
describes the detailed configurations.

6(d)&(g), we also find the different configurations of the pre-
tense attacks has very limited influence on GAA’s defense
quality.

6.3 Robustness against Adaptive Attacks on
the Quasi-Validation Set

Although Assumption 1 and the randomness in the composi-
tion of the Quasi-Validation set (abbrev. QV set) imply the
exact samples in the QV set is hard to be known by the ad-
versary, we further examine the following two worst-case
leakages of the QV set, which may allow the adversary to
submit carefully crafted gradients (or called Adaptive Fault
(AF)) based on the knowledge of the QV set to attempt to
mislead GAA.
• Case A. The adversary knows the distribution where the

QV set is sampled.
• Case B. Some classes are missing in the QV set and the

malicious worker can target on the missing classes.
Intuitively, Case A is possible when the adversary expects

GAA would use samples from similar data domains as the
QV set, while Case B is possible when the QV set is too
small to cover all different classes. It is worth to notice, for
the adversary in Case A, the probability of determining the
exact samples in the QV set is very low in theory, as the QV
set contains less than 10 samples that are chosen indepen-
dently by the server while the sample space of the distribution
known to the adversary, practically the local dataset held by
the manipulated worker, can contain as large as 103 samples
when deep learning models are deployed.

In both cases, we consider the AF follows the same prin-
ciple: it minimizes the loss on a dataset D0, which is chosen
based on the knowledge about the QV set, to tempt GAA to
assign the manipulated worker with high credit. In the mean-
while, the AF maximizes the overall loss on D1, (a subset
of) its own training set, to compromise the whole distributed
learning process. Accordingly, we formulate the gradient V t

i
submitted by a malicious worker (i.e., Worker i) at iteration

t with AF by V t
i ∝ ∇θ(`(θ

t ,D0)−α`(θt ,D1)), where α is a
hyperparameter that controls the stealthiness of the adaptive
fault.
6.3.1 Adaptive Faults in Case A. We choose the D0 as the
full QV set, and the D1 as the local training set of the ma-
nipulated workers. The parameter α in AF is set as 10. We
conduct the GAA defense under three typical attack patterns
listed in the legends of Fig. 7(a)&(b), which show the learn-
ing curves of the benchmark systems under the considered
adaptive attack on the QV set.
Results & Analysis. From Fig. 7(a)&(b), we find in most
cases the final accuracy of the benchmark systems remains
close to the optimal accuracy. For example, under the combo
adaptive attack on both the RL mechanism and the QV set
(i.e., Config. b in Fig. 7(a)&(b)), GAA achieves respectively
about 82% and 65% accuracy on Yelp and Healthcare, which
is close to the performance of the system under no attack.
The results imply that, GAA is robust against the adaptive
adversary knowing the distribution where the QV set is sam-
pled. From our perspective, lacking the knowledge of the
exact QV set would let the adversary only count on his/her
own inexact guess on the QV set. Hence, combining with the
malice on maximizing the loss on the local training set, the
gradient directions crafted by the malicious workers would
be less effective in minimizing the loss on the QV set than the
benign workers and therefore would be less trusted by GAA.
However, when the adversary somehow knows the exact QV
set the server uses, he/she would craft gradients that always
minimize the loss on the QV set and mislead GAA to fully
trust the manipulated worker, while this case would be rare,
if not impossible, depending on the randomness of sampling
and the security of the server.
6.3.2 Adaptive Attacks in Case B. In this setting, the manip-
ulated worker can target on the missing classes by maximizing
the loss on samples belonging to these missing classes, which
forms the D0, while minimizing the loss of samples from
other existing classes, which forms D1.
Experimental Settings. We first sample 10 records from the

10

Figure 7: Learning curves of the benchmark systems on Yelp
and Healthcare when GAA is applied for defending against
adaptive faults in two cases of varied configurations.

full QV set on Healthcare (Yelp) to cover all the classes. For
Healthcare, we reduce the number of classes from 9 to 1 with
stride 2 by eliminating the samples belonging to the miss-
ing classes that we specify. For Yelp, we consider the case
when the QV set contains only positive or only negative sam-
ples. With the QV sets with missing classes, we conduct the
GAA defense against three typical attack patterns listed in
the legends and titles of Fig. 7(c)-(f), which present the learn-
ing curves of the benchmark systems under the considered
adaptive attack on the QV set.
Results & Analysis. As we can see from Fig. 7(c)-(f), even
when the adversary targets on the missing classes in the QV
set, GAA is still able to guarantee the benchmark systems
to reach satisfying performance. For example, under static
Byzantine attacks on Healthcare (in Fig. 7(d)), the final per-
formance with 5 missing classes in the QV set is around 75%,
even better than the 73.1% accuracy of the system under no
attack. Also, Config. c in Fig. 7(c) and Fig. 7(f) demonstrates
GAA remains robustness under combo attacks on the RL
mechanism and the missing classes. Furthermore, we notice
the number of missing classes has minor influence on GAA’s
defense quality, which strongly demonstrates the robustness
of GAA against the adaptive adversary knowing the missing
classes in the QV set.
6.3.3 GAA vs. Different Attacks. Despite the robustness of
GAA against various attacks, the empirical performance does
show subtle differences when GAA is against different attacks.
For example, comparing Fig. 5 and Fig. 4, we find that the
final accuracy of the benchmark systems under randomized
and pretense attacks, two attacks exploiting the knowledge
that GAA uses the RL mechanism to learn credit, is overall no
better than that under static attacks. Similarly, as we can see
from the corresponding results in Fig. 7 and Fig. 4, adaptive
attacks that exploits the knowledge on the QV set are rela-

tively more threatening than static attacks, where the threat
is not further enlarged when the adversary exploits both the
knowledge on the RL mechanism and the QV set, if compar-
ing Config. b & c in Fig. 7(a) & (b) with the corresponding
results in Fig. 5. These phenomena interestingly show, the
more knowledge the adversary has of the deployed defense,
the more threatening the attack could be against GAA.

6.4 Byzantine Worker Detection

In this part, we report the accuracy of Byzantine worker de-
tection when the system is under static Byzantine attacks via
our proposed GAA+ in Proc. 2, compared with the baseline
method the GeoMed+ algorithm in Proc. 1.

Table 4: Precision-recall of Byzantine worker detection meth-
ods.

GAA+ GeoMed+

β = 0.3
K=1 99.7%/6.65% 100%/6.67%
K =5 99.7%/33.2% 100%/33.3%

K =15 99.8%/99.8% 100%/100%

β = 0.7
K=1 99.9%/2.85% 0.0%/0.0%

K =10 99.9%/28.5% 0.0%/0.0%
K =35 99.9%/99.9% 57.1%/57.1%

Experimental Settings. By choosing Byzantine ratio β =
0.3,0.7, we apply two detection algorithms on MNIST with
the total number of workers as 50. Since we have defined the
task of Byzantine worker detection as a top-K classification
task, we report precision/recall in Table 4. Both precision
and recall are calculated as an average over 1×103 randomly
subsequent iterations after 1× 104 iterations of distributed
learning with GAA.
Results & Analysis. As we can see from above, with small
Byzantine ratio, both GeoMed+ and our method achieve near
perfect detection of each Byzantine worker. These empirical
results not only justify that GeoMed+ is indeed a strong base-
line, but also validates GAA+’s comparable performance with
statistical counterparts in slight Byzantium. However, when
the Byzantine ratio β is set up to 0.7, GeoMed+ fails to detect
Byzantine workers any longer, while our method still detects
each Byzantine worker perfectly, regardless of its majority in
total.

6.5 Visualizing Byzantine Attack Patterns

In the final part of experiments, we present several interesting
visualizations on the policy curve of GAA after learning un-
der randomized attacks of q = 1.0, that is, each manipulated
worker inverses its role periodically.
Experimental Settings. We consider two specific random-
ized attacks on MNIST with the following configurations:
(a) n = 10,q = 1.0, p = 1k with initial β = 0.9 and (b)
n = 10,q = 1.0, p = 400 with initial β = 0.5. In other words,
we consider the cases when all workers are manipulated and

11

Figure 8: Capture periodic information of randomized Byzan-
tine attack with GAA.

invert their role periodically. We collect GAA’s action se-
quence in each configuration up to 40k rounds and plot the
policy curves of each worker over a representative slice of it-
erations in Fig. 8 after normalization, where the policy curves
for the initially Byzantine workers are warm-toned and the
initially benign workers cool-toned.
Results & Analysis. First, in both cases the periodic charac-
teristic of the undertaking Byzantine attack is captured well
by our GAA, as its policy curve presents a period close to the
ground-truth. To analyze with more care, we notice, in Fig.
8(b), as GAA’s decision on Byzantine workers appears to be
correct initially, its policy curve mainly evolves vertically. In
other words, GAA tends to behave stable after an optimal pol-
icy is attained. Differently in Fig.8(a), although a low credit
is assigned to the only initially benign worker in the first half
period, GAA wisely skips the other half and swiftly adjust its
policy in the subsequent period by heuristics of reward. The
phenomenon is highlighted by the slashed region in Fig. 8(a).

7 Discussion

On Assumptions 1 & 2. Assumption 1 is used to guarantee
the correct execution of Algorithm 1 and GAA itself would
not be compromised by the adversary, while Assumption 2
is used to guarantee GAA has at least one worker to trust.
We claim both assumptions are reasonable. On one hand,
the former assumption is commonly assumed in previous
studies of Byzantine robustness [4,11,15,16,20,31,62], which
serves as a standing point of most published defenses, since
otherwise the adversary could easily tamper the global model
itself. On the other hand, the security level of the central server
in real world distributed systems is always on a much higher
level than working nodes, due to, e.g., rigorous access control
mechanisms [55]. Therefore, the cost of attacks on central
server is much higher than that on workers.

Moreover, we find it is quite straightforward to satisfy As-
sumption 2 if Assumption 1 is valid. For instance, the parame-
ter server can spare certain computation resources to simulate
one worker node on its own devices. Therefore, falling back
on the properness of Assumption 1, we could claim the sim-
ulated worker is an always benign worker and thus satisfies
the second assumption.
On Assumptions 3 & 4. These two assumptions regularize
the range of learning tasks which GAA can help. Assumption
3 is again a commonly adopted assumption in most known

Figure 9: Learning curves on Yelp and Healthcare when GAA
is equipped with varied size of the quasi-validation set.

defenses [4,11,15,16,20,31,62]. On one hand, if the workers
share a copy of the same training set as in many conventional
distributed learning systems (including the MNIST & CIFAR-
10 cases) [3, 34, 41, 43, 50, 64], both Assumptions 3 & 4 can
be naturally satisfied due to the availability of a validation
set from the same data source. For some newly proposed
distributed learning systems (e.g., federated learning [34])
when the workers have their local datasets (including the Yelp
& Healthcare cases), we demonstrate with the experimental
results in Fig. 9, where we control the size of the QV set on
Yelp and Healthcare to be 1 and 10,100, · · · ,1000 by sam-
pling from the full QV set, that the requirement on the QV
set is relatively easy to be satisfied with only a small number
of samples from similar data domains. For example, from Fig.
9(b), we find the final accuracy on Yelp under randomized
attacks is both close to the bottleneck accuracy whenever the
QV set size is 1 or 1k, despite a slightly larger variance of
performance and a lower convergence rate when the QV set is
smaller. Moreover, experiments in Section 6.3 has proved that
a small QV set is not likely to be exploited as a weak spot of
the system whenever it may have missing classes or share a
similar distribution with the local datasets of the manipulated
workers. Despite this, we admit the QV set may be a weak
spot for GAA if it is fully known by the adversary, while this
case would be rare, if not impossible, in practice due to the
randomness in preparing the QV set by the server and the
security of the server.

For a validation of the requirement on the QV set in As-
sumption 4, we numerically estimate the average KL diver-
gence among the local datasets and the full QV set on Health-
care. We find the empirical value is about 0.1. By inserting
the empirical values of the KL divergence and the other terms
in Section 4.4, we find the convergence rate predicted by The-
orem 1 is quite close to the empirical learning curves. We
provide more details in Appendices A.2 & A.4. However,
GAA could have certain limitations to guarantee Assumption
4 when the server has no knowledge about the data domain
of the undergoing distributed learning process or the learning
protocol may have privacy requirements [61], which we leave
as an interesting future work.
On Threat Model. Does the real world distributed learning

12

environment really show such malice that the Byzantine ratio
has no explicit upper bound or even fluctuate? It may not the
case for current distributed learning systems in stable local
network environments [52]. Existing real world cases are, for
example, distributed systems in unstable network environment
with low-specification working machines, where a majority
of nodes would send faulty gradients due to network or com-
putation errors in an unpredictable manner. In this situation,
GAA turns out to be a promising tool to help the underlying
learning process converge to a near-optimal solution. Other
possible use cases of GAA can be found in federated learn-
ing systems [34, 61], where end users are allowed to build a
global learning model in cooperation. From our perspective,
we suggest the threat model in this case should be formulated
as malicious as possible, since the reliability of end users can
be hardly guaranteed, similar to the case of DDoS attack [45].
Limitations and Future Directions. In one repetitive test of
GAA, we observed a fluctuated test result on MNIST, which,
based on our detailed analysis in Appendix A.5, could proba-
bly occur when the reward distribution of malicious workers
is almost indistinguishable from that of benign workers. This
may weaken the defense capability of GAA against attacks
that aim at misclassification of targeted data samples instead
of the overall accuracy we focus on in the current work. This
kind of targeted attacks can be highly stealthy in terms of
worker behavior [8] and remains an open challenge in build-
ing robust distributed learning systems [24].

Due to the limited access to distributed learning systems in
industry, we have tried our best to cover typical use cases
in image classification, sentiment analysis and intelligent
healthcare, where the latter two are based on datasets from
real-world applications and are minimally preprocessed to
reflect the characteristics of data in practice. Nevertheless,
more research efforts are required to provide a more thorough
evaluation of GAA’s security and performance in more ap-
plication domains within industrial environments, which is
very meaningful to be pursued as a future work. Although the
distributed learning paradigm we study remains a mainstream
techniques, there do exist other distributed learning paradigms
such as second-order optimization based paradigms [50] or
model-parallel paradigms [33]. To generalize GAA to more
distributed learning paradigms will also be an interesting di-
rection to follow.

8 More Related Work

Byzantine Robustness of Gradient-Based Distributed
Learning Systems. Recent years, distributed learning sys-
tems under Byzantine attacks have aroused emerging research
interests. Mainstream works in this field mainly focus on
Byzantine robustness of the distributed learning protocol we
introduce in Section 2. As we have reviewed in Section 3.2,
most previous works are more interested in the defense side
and usually utilize statistical approaches towards Byzantine

robustness [4,11,16,31,62]. At the attack side, two very recent
works [6, 25] have devised carefully-crafted attacks against
Krum and GeoMed, while the attack techniques are highly
dependent on the target defense and are hard to be generalized
to GAA. Correspondingly, we in turn investigate the robust-
ness of GAA under adaptive attacks on its own mechanism
in Sections 6.2 & 6.3. During our paper preparation, we no-
tice one recent work that also attempts to break the β = 0.5
bound [60]. The work is not learning-based and uses the loss
decrease at the current iteration on the training set to rank the
workers’ credibility, which can be viewed a special case of
our algorithm when the workers share the same training set
and T = 1 in Algorithm 1. Moreover, the work only considers
a 4-layer convolutional network on CIFAR-10 as the only
benchmark system, while we provide more comprehensive
evaluations in four typical scenarios, including the case they
studied.
Byzantine Problem in Other Contexts. Aside from the
aforementioned works on gradient-based distributed learning,
there also exist some researches on other distributed learn-
ing protocols. For example, Chen et al. proposed a robust
distributed learning protocol by requiring workers submit-
ting redundant information [15]; Damaskinos et al. studied
the Byzantine robustness of asynchronous distributed learn-
ing [20]; another thread of works exploited the vulnerability
of distributed learning protocols where a worker is directly
allowed to submit the local model to the master [5, 7, 28]. In
this paper, we focus on the gradient-based distributed learn-
ing system model as studied by the mainstream defenses and
therefore none of the aforementioned works are directly re-
lated to this paper.

Besides the Byzantine robustness in the context of machine
learning, it has also been studied in many other contexts, like
the multi-agent systems [46] and file systems [21], and was
first studied in the seminal work by Lamport [37]. From a
higher viewpoint on adversarial machine learning, challenges
like adversarial example [30], data poisoning [9] and privacy
issues [26, 44, 51] remain open problems and require future
research efforts on building more robust and reliable machine
learning systems.

9 Conclusion

In this paper, we have proposed the design of a novel RL-
based defense GAA against Byzantine attacks, which learns
to be Byzantine robust from interactions with the distributed
learning systems. Due to the interpretability of its policy
space, we have also successfully applied our method to Byzan-
tine worker detection and behavioral pattern analysis. With
theoretical and experimental efforts, we have proved GAA,
as a promising defense and a strong complement to existing
defenses, is effective, efficient and interpretable for guaran-
teeing the robustness of distributed learning systems in more
general and challenging use cases.

13

Acknowledgement

We sincerely appreciate the shepherding from Yuan Tian.
We would also like to thank the anonymous reviewers for
their constructive comments and input to improve our pa-
per. This work was supported in part by the National Nat-
ural Science Foundation of China (61972099, U1636204,
U1836213, U1836210, U1736208, 61772466, U1936215, and
U1836202), the National Key Research and Development Pro-
gram of China (2018YFB0804102), the Natural Science Foun-
dation of Shanghai (19ZR1404800), the Zhejiang Provincial
Natural Science Foundation for Distinguished Young Schol-
ars under No. LR19F020003, and the Ant Financial Research
Funding. Min Yang is the corresponding author, and a faculty
of Shanghai Institute of Intelligent Electronics & Systems,
Shanghai Institute for Advanced Communication and Data
Science, and Engineering Research Center of CyberSecurity
Auditing and Monitoring, Ministry of Education, China.

References

[1] https://www.yelp.com/dataset. Accessed: 2019-09-10.

[2] https://www.cms.gov/Research-Statistics-Data-and-
Systems/Statistics-Trends-and-Reports/Medicare-
Provider-Charge-Data/Physician-and-Other-
Supplier2016.html. Accessed: 2019-09-10.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning.
In OSDI, 2016.

[4] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzan-
tine stochastic gradient descent. In NeurIPS, 2018.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. ArXiv, 1807.00459.

[6] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A
little is enough: Circumventing defenses for distributed
learning. ArXiv, 1902.06156.

[7] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin Calo. Analyzing federated learning
through an adversarial lens. ArXiv, 1811.12470.

[8] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin B. Calo. Analyzing federated learning
through an adversarial lens. ArXiv, 1811.12470.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
ICML, 2012.

[10] Christopher M. Bishop and Nasser M. Nasrabadi. Pat-
tern recognition and machine learning. J. Electronic
Imaging, 2007.

[11] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al.
Machine learning with adversaries: Byzantine tolerant
gradient descent. In NeurIPS, 2017.

[12] Léon Bottou. Online learning and stochastic approxi-
mations. On-line learning in neural networks, 1998.

[13] Stephen Boyd and Lieven Vandenberghe. Convex opti-
mization. Cambridge university press, 2004.

[14] Sébastien Bubeck et al. Convex optimization: Algo-
rithms and complexity. Foundations and Trends® in
Machine Learning, 2015.

[15] Lingjiao Chen, Hongyi Wang, Zachary Charles, and
Dimitris Papailiopoulos. Draco: byzantine-resilient
distributed training via redundant gradients. ArXiv,
1803.09877.

[16] Yudong Chen, Lili Su, and Jiaming Xu. Distributed sta-
tistical machine learning in adversarial settings: Byzan-
tine gradient descent. POMACS, 2017.

[17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and An-
dré van Schaik. Emnist: Extending mnist to handwritten
letters. IJCNN, 2017.

[18] Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pa-
chocki, and Aaron Sidford. Geometric median in nearly
linear time. In STOC, 2016.

[19] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz.
Torch: a modular machine learning software library.
Technical report, 2002.

[20] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid
Guerraoui, Rhicheek Patra, and Mahsa Taziki. Asyn-
chronous byzantine machine learning (the case of sgd).
ArXiv, 1802.07928.

[21] Miguel Oom Temudo de Castro. Practical byzantine
fault tolerance. In OSDI, 1999.

[22] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large scale dis-
tributed deep networks. In NeurIPS, 2012.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. ArXiv,
1810.04805.

[24] Peter Kairouz et al. Advances and open problems in
federated learning. ArXiv, 1912.04977.

14

[25] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning
attacks to byzantine-robust federated learning. ArXiv,
1911.11815.

[26] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence informa-
tion and basic countermeasures. In CCS, 2015.

[27] Ken-ichi Funahashi and Yuichi Nakamura. Approxima-
tion of dynamical systems by continuous time recurrent
neural networks. Neural networks, 1993.

[28] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh.
Mitigating sybils in federated learning poisoning. ArXiv,
1808.04866.

[29] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yan-
nis Sismanis. Large-scale matrix factorization with
distributed stochastic gradient descent. In KDD, 2011.

[30] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. ArXiv, 1412.6572.

[31] Rachid Guerraoui, Sébastien Rouault, et al. The hidden
vulnerability of distributed learning in byzantium. In
ICML, 2018.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CVPR, 2015.

[33] Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. ArXiv, 1811.06965.

[34] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communi-
cation efficiency. ArXiv, 1610.05492.

[35] Alex Krizhevsky and Geoffrey Hinton. Learning multi-
ple layers of features from tiny images. Technical report,
2009.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In NeurIPS, 2012.

[37] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. TOPLAS, 1982.

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature, 2015.

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

[40] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes. ArXiv, 1804.08838.

[41] Mu Li, David G Andersen, Alexander J Smola, and Kai
Yu. Communication efficient distributed machine learn-
ing with the parameter server. In NeurIPS, 2014.

[42] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for nonconvex
optimization. In NeurIPS, 2015.

[43] H Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, et al. Communication-efficient learn-
ing of deep networks from decentralized data. ArXiv,
1602.05629.

[44] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In S & P, 2019.

[45] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos
attack and ddos defense mechanisms. ACM SIGCOMM
Computer Communication Review, 2004.

[46] Fabio Pasqualetti, Antonio Bicchi, and Francesco Bullo.
Consensus computation in unreliable networks: A sys-
tem theoretic approach. IEEE Transactions on Auto-
matic Control, 2010.

[47] Herbert Robbins and Sutton Monro. A stochastic ap-
proximation method. In Herbert Robbins Selected Pa-
pers, pages 102–109. 1985.

[48] Peter J Rousseeuw. Multivariate estimation with high
breakdown point. Mathematical statistics and applica-
tions, 1985.

[49] Ahmed Salem, Apratim Bhattacharyya, Michael Backes,
Mario Fritz, and Yang Zhang. Updates-leak: Data set
inference and reconstruction attacks in online learning.
ArXiv, 1904.01067.

[50] Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-efficient distributed optimization
using an approximate newton-type method. In ICML,
2014.

[51] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. S & P, 2017.

[52] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. Nature, 2016.

15

[53] Richard S Sutton, Andrew G Barto, Francis Bach, et al.
Reinforcement learning: An introduction. MIT press,
1998.

[54] Richard S Sutton, David A McAllester, Satinder P Singh,
and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. In
NeurIPS, 2000.

[55] Andrew S Tanenbaum and Maarten Van Steen. Dis-
tributed systems: principles and paradigms. Prentice-
Hall, 2007.

[56] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael
Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. American
Control Conference, 1984.

[57] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 1992.

[58] Jon Wellner et al. Weak convergence and empirical pro-
cesses: with applications to statistics. Springer Science
& Business Media, 2013.

[59] Paul J Werbos. Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE, 1990.

[60] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta.
Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In ICML, 2018.

[61] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and ap-
plications. TIST, 2019.

[62] Dong Yin, Yudong Chen, Kannan Ramchandran, and
Peter Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. ArXiv, 1803.01498.

[63] Sixin Zhang, Anna Choromanska, and Yann LeCun.
Deep learning with elastic averaging sgd. In NeurIPS,
2015.

[64] Martin Zinkevich, Markus Weimer, Lihong Li, and
Alex J Smola. Parallelized stochastic gradient descent.
In NeurIPS, 2010.

A Other Details

A.1 Experimental Environments
All the defenses and experiments are implemented with Torch
[19], which is an open-source software framework for nu-
meric computation and deep learning. All our experiments
are conducted on a Linux server running Ubuntu 16.04, one
AMD Ryzen Threadripper 2990WX 32-core processor and 2
NVIDIA GTX RTX2080 GPUs. We simulate the distributed

learning setting by sequential computation of gradients on
randomly sampled mini-batches.

A.2 Estimate KL-divergence

We design the following procedures to estimate the pairwise
KL-divergence between datasets Di and D j on Healthcare,
which consist of samples of form (x,y) s.t. x ∈ Rn, y ∈ [K],
where n = 1024 and K = 10. Fig. 10 shows the heatmap of
the KL-divergence among the local datasets on each worker
and the full QV set. The empirical KL-divergence is about
0.16 on average.
1. Train one probabilistic model pi(y|x) for each dataset Di

to a certain error threshold.
2. Do uniform sampling over [−0.5,0.5]n for N times to form

a set of points {xk}N
k=1.

3. Calculate the empirical KL-divergence between the joint
distributions that underlie Di, D j by

KL(Di||D j)=
1

K×N

N

∑
k=1

K

∑
c=1

pi(xk|y= c) log
pi(xk|y = c)
p j(xk|y = c)

(3)

Figure 10: Estimated KL-divergence among local datasets
and the prepared validation set on Healthcare.

However, it is true that it is challenging to estimate the
KL-divergence when the QV set is very small. To leverage
the above algorithm for estimation, ideally we require the
knowledge of the distribution where the QV set is sampled,
so that we can estimate the conditional distribution p(y|x)
via learning-based approaches. Intuitively, if QV set contains
more samples, the estimated conditional distribution is less
biased and thus the error of estimating the KL-divergence is
smaller. To be concrete, the minimum requirement for con-
ducting the estimation is, the QV set should contain at least
one sample from each class and thus we can estimate the
conditional distribution with support vector classifier or K-
Nearest Neighbor (KNN). As a future work, it would be a
meaningful direction to study how to guarantee a low KL-
divergence in a distributed learning protocol that may have
privacy requirements [61].

16

A.3 Details of the Benchmark Systems

1. MNIST: The first case is training a fully connected feed-
forward neural network for the hand-written digital clas-
sification task on the MNIST dataset [39], with 50 work-
ers. This public dataset contains 60000 28×28 images of
10 digits for training and 10000 for testing. Each worker
shares a copy of the training set. The model consists of
784 inputs, 10 outputs with soft-max activation and one
hidden layer with 30 rectified linear units (ReLu [36]). The
dimension of parameters is 25450.

2. CIFAR-10: The second case is training a ResNet-18
[32] model for the image classification on the CIFAR-10
dataset [35] with 50 workers. This dataset contains 60000
28×28×3 images of 10 classes of objects for training and
10000 for testing. Each worker shares a copy of the train-
ing set. The standard model ResNet-18 has 18 end-to-end
layers and 11173962 learnable parameters in total.

3. Yelp: The third case is training a fully connected feed-
forward neural network for the sentiment classification
task (i.e., binary classification on positive or negative at-
titude), with 10 workers. Each worker has 20000 1024-
dimension features of Yelp reviews for restaurants in its
local metropolitan area [1]. Each worker corresponds to
one metropolitan area. The features are extracted with a
pretrained Bert language model by Google [23]. We re-
moved a fraction of data samples from each worker to form
the test set, which consists of 1000 samples per class. The
model consists of 1024 inputs, 2 outputs with soft-max
activation and one hidden layer with 10 sigmoid units. The
dimension of parameters is 10272.

4. Healthcare: The fourth case is training a fully connected
feed-forward neural network for predicting the health-
care provider type (10 classes) from textual treatment
descriptions, with 50 workers. Each worker has 20000
1024-dimension Bert features of treatment descriptions
from its local hospitals. Each worker corresponds to a
state. The dataset is prepared from CMS public healthcare
records [2] and we removed a fraction of data samples
from each worker to form the test set, which consists of
1000 samples per class. The model consists of 1024 inputs,
10 outputs with softmax activation and one hidden layer
with 32 sigmoid units. The dimension of parameters is
33130.

A.4 An Empirical Validation of the Analytic
Results

Without loss of generality, we take Theorem 1 as an exam-
ple. First, we explain the terms R, M, α and S one by one
with more care and give the empirical values on Healthcare
for demonstration. In general, our terminology follows the
conventions in [14], a standard text on optimization theory.
• Diameter R: The diameter R of a parameter space Θ (i.e.,

the feasible set of parameters of the underlying learning
model) is defined as the maximal 2-norm of an element
θ ∈ Θ. Formally, R = sup{‖θ‖2 : θ ∈ Θ}. On Healthcare,
we estimate the 2-norm of the flattened parameter of the
neural network during the learning process to estimate as
the scale of R, which is plotted in Fig. 11(a). The average
value of R is around 11.05.

• Upper bound of gradient norm M: The term M is used to
denote the upper bound of the gradient norm. Formally, M =
supθ∈Θ ‖∇θ f̂ (θ,Dtrain)‖2. On Healthcare task, we compute
the 2-norm of the gradient submitted by the always-benign
worker during the learning process to estimate the scale of
M, which is plotted in Fig. 11(b). The average value of M
is around 0.36.

• Smoothness factor η: The term η occurs in our assump-
tion that the loss function f is η-smooth. Formally, the
loss function f is said to be η-smooth if ∀θ1,θ2 ∈ Θ,
| f̂ (θ1,Dtrain)− f̂ (θ2,Dtrain)| ≤ η‖θ1− θ2‖2. We estimate
the empirical scale of α by calculating the expressions at
both sides of the definition during the learning process,
which is plotted in Fig. 11(c). The average value of η is
around 0.50.

• Size of mini-batch S: The term S denotes the training size
of the mini-batch on which the always-benign worker cal-
culates the gradient. In addition, S is required to be no less
than 1 (i.e., the training set contains at least one sample) or
otherwise the theorem is invalid. On Healthcare, S is set as
256.

• Finally, the max-norm of the loss function (which is im-
plemented as a cross-entropy) is upper bound by the maxi-
mal entropy of the K-class classification task (i.e., ‖ f‖∞ ≤
1
K lnK, which is about 0.23 for K = 10 on Healthcare),
while the estimated KL divergence term is about 0.16 from
Fig. 10.
Therefore, on Healthcare under static Byzantine attacks

with β = 0.7,n = 50, the numeric form of Theorem 1 writes
as

f (θt)− f (θ∗)<
2.05√

t
+

16.58
t

+0.13+O(e−t) (4)

which produces the curve of the predicted training loss in
Fig. 11(d). Compared with the empirical training loss curve,
we find the prediction from Theorem 1 roughly conforms to
GAA’s empirical behavior in this case.

A.5 Analysis of a Fluctuated Phenomenon on
MNIST under Randomized Attacks

In one repetitive test of GAA, we noticed a fluctuated test
result on MNIST under randomized attacks of p = 0.5,q = 5,
initially β = 26/50, which we report below in Fig. 12. In
fact, through a larger number of repetitive experiments, we
have observed this phenomenon only on MNIST but not on
other three benchmarks. We would like to clarify that this

17

Figure 11: Empirical values of the theoretical terms in Theorem 1, alongside the predicted training loss curves.

phenomenon is not a common case in repetitive tests and we
reported this result here mainly because we think this singular
phenomenon may help the readers understand the behavior
of GAA more thoroughly. Below, we further investigate the
possible causes of this phenomenon.

Figure 12: An observed fluctuated run of GAA defense on
MNIST under the randomized attack: (a) its learning curve
and (b) its policy curves.

As we can see from Fig. 12, the policy curve of GAA is
more unstable than that in other cases, which in other words
means GAA’s credit on each worker fluctuates a lot. This phe-
nomenon indicates that GAA somehow could not recognize
the always benign worker in this situation. As a hypothesis,
we speculate the reason as the low complexity of the MNIST
task [17, 40, 49], which makes the reward from the workers’
gradient on MNIST is not as distinguishable as in other cases.
To validate this point, we plot the distribution of the rewards
(i.e., the relative loss decrease) yielded by the benign workers
and the randomized Byzantine workers on each benchmark
as follows.

In detail, we set the worker number as 2 and set their roles
respectively as benign and Byzantine with the RF tampering
algorithm. We execute the classical distributed learning pro-
tocol for 10 epochs over the corresponding training set and
collect the yielded reward (calculated on the quasi-validation

Figure 13: Distribution of rewards from benign workers and
from randomized Byzantine workers on MNIST and CIFAR-
10.

set of the same settings in Section 5.1) respectively from the
benign and Byzantine workers for every 1k iterations. We
then plot the histogram of rewards on MNIST and CIFAR-10
in Fig. 13.

As we can see from Fig. 13, on CIFAR-10 the Byzantine
worker always yields zero reward, which is highly divergent
from that of the benign worker. Differently, on MNIST the
Byzantine worker and the benign worker yield rewards that
follow similar distributions, which thus may bring difficulties
for GAA to distinguish one from the other. A noticeable point
is the Byzantine worker tends to yield rewards that distribute
in a slightly wider range than the benign one, which could
be another cause of the instability in GAA’s learning curve
on MNIST. This speculation is also supported by the MNIST
case under static Byzantine attacks of ratio over 0.5 & 0.7
(in Fig. 4), where the baseline methods were observed to
perform slightly stronger than the random-guess, while on
other datasets they did not. This phenomenon suggests that the
model on MNIST still learns something from even incorrect
gradients.

18

	Introduction
	Background and Preliminaries
	Security Settings
	Threat Model
	Previous Defenses

	Defense with Gradient Aggregation Agent
	Overview
	Distributed Learning as a Markov Decision Process
	Learning Optimal Policy for GAA
	Analytical Results
	Byzantine Worker Detection & Behavior Analysis

	Overview of Evaluations
	Overall Settings
	Summary of Results

	Results & Analysis
	Robustness against Static Attacks
	Robustness against Adaptive Attacks on the RL mechanism
	Robustness against Adaptive Attacks on the Quasi-Validation Set
	Byzantine Worker Detection
	Visualizing Byzantine Attack Patterns

	Discussion
	More Related Work
	Conclusion
	Other Details
	Experimental Environments
	Estimate KL-divergence
	Details of the Benchmark Systems
	An Empirical Validation of the Analytic Results
	Analysis of a Fluctuated Phenomenon on MNIST under Randomized Attacks

